Evidence of formation of glushinskite as a biomineral in a Cactaceae species.
نویسندگان
چکیده
The X-ray diffractometric and infrared spectroscopic investigation of crystalline material isolated from the Cactaceae species Opuntia ellisiana shows the presence of a very complex mineral composition, including whewellite (monohydrated calcium oxalate), opal (SiO2), calcite (CaCO3) and glushinskite (dihydrated magnesium oxalate). This is the first report of the presence of magnesium oxalate in plants.
منابع مشابه
In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater
This study investigates the in vitro formation of Ca-oxalates and glushinskite through fungal interaction with carbonate substrates and seawater as a process of biologically induced metal recycling and neo-mineral formation. The study also emphasizes the role of the substrates as metal donors. In the first experiment, thin sections prepared from dolomitic rock samples of Terwagne Formation (Car...
متن کاملCharacterization of calcium oxalate biominerals in Pereskia species (Cactaceae).
Calcium oxalate druses were isolated from the stems and leaves of six Pereskioideae family members and investigated by infrared spectroscopy, showing that in all samples the biomineral was present in the form of whewellite, CaC2O4 x H2O. As Pereskia is thought to represent the "ancestral" condition of the leafless stem-succulent cacti, these results suggest that the biomineralization of calcium...
متن کاملBiomineralization and Biomimetic Synthesis of Biomineral and Nanomaterials
Biominerals and biomaterials with unique microstructure are mainly consisted of organic and inorganic materials, and exhibit excellent biological and mechanical properties. The formation mechanism of biomineral indicated that the organic matrixes have an important influence on the morphology and structure of the inorganic matrix material in the process of biomineralization. However, the biomine...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2005